Australian astrophysicists detect ancient star-crash

Please login to favourite this article.

A team of scientists have detected a star-crash in space, about 500 million years ago.

This article about some impressive technology would be suited to Earth and Space and Physical Sciences for years 7, 8, 9, and 10 as well as senior sciences.

Word Count / Video Length: 505 / 2:00 mins

A team of international scientists, including Australian astrophysicists, have used the world’s most sensitive detector to witness an epic collision between two stars nearly 500 million years ago.

The team witnessed the discovery just weeks after the restarting of the most sensitive scientific instrument ever built – the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) – which comprises twin detectors in the United States.

The Australian members of the team are from the Australian National University.

This is the first time such an event has been witnessed since the detectors were taken offline for upgrades to improve their range and precision, and promises a new dawn for space discovery.

On 25 April 2019, one of the LIGO machines detected the ripples in space and time from the collision of two neutron stars, which are the densest stars in the Universe – they have an average radius of 15 kilometres and are twice the mass of our Sun.

The neutron star collision occurred about 4,750 million trillion kilometres away from Earth – a distance which equates to 500 million light years.

Game changing detection of star collision

Professor Susan Scott from the ANU, said the achievement was just the beginning, describing the upgraded gravitational-wave detectors as “discovery machines”.

“The LIGO gravitational-wave detectors are the most sensitive instruments on Earth,” says Scott.

“With the improved sensitivity of the detectors during our year of downtime, we have achieved the second detection of two neutron stars smashing into each other – this time in less than one month of observing time.

“We expect to detect gravitational waves from lots more cataclysmic events – including those we’ve never detected before such as a black hole swallowing a neutron star and nearby exploding stars, which produce much fainter signals.”

An artist’s impression of the two neutron stars colliding. Credit: LSC/Sonoma State University/Aurore Simonnet

Scott’s colleague Dr Terry McRae was involved in the design of instruments called quantum squeezers, which were installed on the LIGO detectors. This, and other upgrades, have improved the sensing capabilities of the machines.

The squeezers dampen quantum noise that can drown out weak gravitational-wave signals.

“With these improvements, the LIGO detectors can see much further into the Universe and detect many more gravitational-wave signals,” says McRae.

LIGO detector goes offline at critical moment

According to Scott, astronomers had to scan a very large area of the sky in search for the latest star collision due to one of the LIGO detectors being offline briefly at the critical moment. The European Gravitational Observatory’s gravitational-wave detector in Italy, Virgo, also picked up a signal from the neutron star collision but the signal was very weak.

“ANU led efforts to locate the neutron star collision by scanning a massive region of the southern sky for bright light from the explosion with the SkyMapper telescope,” says Scott.

Chris Onken from ANU says telescopes like SkyMapper will play a vital role in detecting similar events in the future.

“The hunt goes on.”

“With SkyMapper’s wide field of view and capability to scan large areas of the southern sky quickly, ANU will play an increasingly important role in the emerging field of gravitational-wave astronomy.”

Login or Sign up for FREE to download a copy of the full teacher resource

Years: 7, 8, 9, 10, 11, 12


Earth and Space Sciences – Big Bang Theory

Physical Sciences – Forces, Energy

Additional: Careers, Maths, Technology, Engineering

Concepts (South Australia):

Earth and Space Sciences – Earth in Space

Physical Sciences – Forces and Motion, Energy