Branching out: Making graphene from gum trees

Please login to favourite this article.

Researchers have developed a cost-effective and eco-friendly way of producing graphene using one of Australia’s most abundant resources – eucalyptus trees.

This interesting article could be used alongside Earth and Space, Chemical and Biological Sciences for years 7, 8, 9, and 10. It opens up a great opportunity for a discussion on the links between science and technology as well as the development of future technologies.

Word Count: 386

Researchers suggest that gum trees present a new cost-saving way to produce graphene.

Graphene is the thinnest and strongest material known to humans. It’s also flexible, transparent and conducts heat and electricity 10 times better than copper, making it ideal for anything from flexible nanoelectronics to better fuel cells.

However, it’s usefulness is limited by its difficulty to produce.

Now, a new approach by researchers from RMIT University and the National Institute of Technology, Warangal in India, uses Eucalyptus bark extract and is cheaper and more sustainable than current synthesis methods.

The method has been published in the journal Sustainable Chemistry and Engineering.

Gum trees leads to cheaper graphene production

Suresh Bhargava, who led the research at RMIT, says the new method could drastically reduce the cost of graphene production.

“Eucalyptus bark extract has never been used to synthesise graphene sheets before and we are thrilled to find that it not only works, it’s in fact a superior method, both in terms of safety and overall cost,” says Bhargava.

“Our approach could bring down the cost of making graphene from around $USD100 per gram to just 50 cents, increasing it availability to industries globally and enabling the development of an array of vital new technologies.”

Graphene’s distinctive features make it a transformative material that could be used in the development of flexible electronics, more powerful computer chips and better solar panels, water filters and bio-sensors.

Green chemistry avoids use of toxic substances

Vishnu Shanker from the National Institute of Technology, Warangal, says the ‘green’ chemistry avoids the use of toxic reagents, potentially opening the door to the application of graphene not only for electronic devices but also biocompatible materials.

Eucalyptus bark extract would decrease the cost of graphene production. Credit: RMIT

Chemical reduction is the most common method for synthesising graphene oxide as it allows for the production of graphene at a low cost in bulk quantities.

This method however relies on reducing agents that are dangerous to both people and the environment.

When tested in the application of a supercapacitor, the ‘green’ graphene produced using this method matched the quality and performance characteristics of traditionally-produced graphene without the toxic reagents.

Bhargava says the abundance of eucalyptus trees in Australia made it a cheap and accessible resource for producing graphene locally.

“Graphene is a remarkable material with great potential in many applications due to its chemical and physical properties and there’s a growing demand for economical and environmentally friendly large-scale production.”

Login or Sign up for FREE to download a copy of the full teacher resource

Years: 7, 8, 9, 10


Biological Sciences – Ecosystems

Chemical Sciences – Mixtures and Separations, Chemical Reactions

Earth and Space Sciences – Renewable/Non-Renewable Resources

Additional: Careers, Technology, Engineering

Concepts (South Australia):

Biological Sciences – Interdependence and Ecosystems

Chemical Sciences – Properties of Matter, Change of Matter

Earth and Space Sciences – The Earth’s Surface